


FUNDAMENTAL CONSTANTS

Constant Symbol Value

Power of 10 Units

Speed of light c 2.997 924 58* 108 m s−1

Elementary charge e 1.602 176 565 10−19 C

Planck’s constant h 6.626 069 57 10−34 J s

ħ = h/2π 1.054 571 726 10−34 J s

Boltzmann’s constant k 1.380 6488 10−23 J K−1

Avogadro’s constant NA 6.022 141 29 1023 mol−1

Gas constant R = NAk 8.314 4621 J K−1 mol−1

Faraday’s constant F = NAe 9.648 533 65 104 C mol−1

Mass

  Electron me 9.109 382 91 10−31 kg

  Proton mp 1.672 621 777 10−27 kg

  Neutron mn 1.674 927 351 10−27 kg

  Atomic mass constant mu 1.660 538 921 10−27 kg

Vacuum permeability μ0 4π* 10−7 J s2 C−2 m−1

Vacuum permittivity ε0 = 1/μ0c
2 8.854 187 817 10−12 J−1 C2 m−1

4πε0 1.112 650 056 10−10 J−1 C2 m−1

Bohr magneton μB = eħ/2me 9.274 009 68 10−24 J T−1

Nuclear magneton μN = eħ/2mp 5.050 783 53 10−27 J T−1

Proton magnetic moment µp 1.410 606 743 10−26 J T−1

g-Value of electron ge 2.002 319 304

Magnetogyric ratio  

  Electron γe = −gee/2me −1.001 159 652 1010 C kg−1

  Proton γp = 2µp/ħ 2.675 222 004 108 C kg−1

Bohr radius a0 = 4πε0ħ
2/e2me 5.291 772 109  10−11 m

Rydberg constant �
∞R  = mee

4/8h3cε0
2

hc �∞R /e

1.097 373 157 

13.605 692 53

 105 cm−1

eV

Fine-structure constant α = μ0e
2c/2h

α−1

7.297 352 5698

1.370 359 990 74 

10−3

102

Stefan–Boltzmann constant σ = 2π5k4/15h3c2 5.670 373 10−8 W m−2 K−4

Standard acceleration of free fall g 9.806 65* m s−2 

Gravitational constant G 6.673 84 10−11 N m2 kg−2

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.
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PREFACE

Our Physical Chemistry is continuously evolving in response 
to users’ comments and our own imagination. Te principal 
change in this edition is the addition of a new co-author to the 
team, and we are very pleased to welcome James Keeler of the 
University of Cambridge. He is already an experienced author 
and we are very happy to have him on board.

As always, we strive to make the text helpful to students 
and usable by instructors. We developed the popular ‘Topic’ 
arrangement in the preceding edition, but have taken the 
concept further in this edition and have replaced chapters by 
Focuses. Although that is principally no more than a change of 
name, it does signal that groups of Topics treat related groups 
of concepts which might demand more than a single chapter 
in a conventional arrangement. We know that many instruc-
tors welcome the fexibility that the Topic concept provides, 
because it makes the material easy to rearrange or trim.

We also know that students welcome the Topic arrangement 
as it makes processing of the material they cover less daunt-
ing and more focused. With them in mind we have developed 
additional help with the manipulation of equations in the 
form of annotations, and Te chemist’s toolkits provide further 
background at the point of use. As these Toolkits are ofen rel-
evant to more than one Topic, they also appear in consolidated 
and enhanced form on the website. Some of the material pre-
viously carried in the ‘Mathematical backgrounds’ has been 
used in this enhancement. Te web also provides a number 
of sections called A deeper look. As their name suggests, these 
sections take the material in the text further than we consider 
appropriate for the printed version but are there for students 
and instructors who wish to extend their knowledge and see 
the details of more advanced calculations.

Another major change is the replacement of the 
‘Justifcations’ that show how an equation is derived. Our in-
tention has been to maintain the separation of the equation 
and its derivation so that review is made simple, but at the 
same time to acknowledge that mathematics is an integral fea-
ture of learning. Tus, the text now sets up a question and the 
How is that done? section that immediately follows develops 
the relevant equation, which then fows into the following text.

Te worked Examples are a crucially important part of the 
learning experience. We have enhanced their presentation by 
replacing the ‘Method’ by the more encouraging Collect your 
thoughts, where with this small change we acknowledge that 
diferent approaches are possible but that students welcome 
guidance. Te Brief illustrations remain: they are intended 
simply to show how an equation is implemented and give a 
sense of the order of magnitude of a property.

It is inevitable that in an evolving subject, and with evolv-
ing interests and approaches to teaching, some subjects wither 
and die and are replaced by new growth. We listen carefully 
to trends of this kind, and adjust our treatment accordingly. 
Te topical approach enables us to be more accommodating 
of fading fashions because a Topic can so easily be omitted by 
an instructor, but we have had to remove some subjects simply 
to keep the bulk of the text manageable and have used the web 
to maintain the comprehensive character of the text without 
overburdening the presentation.

Tis book is a living, evolving text. As such, it depends very 
much on input from users throughout the world, and we wel-
come your advice and comments.

PWA
JdeP

JK



vi  12  The properties of gases

USING THE BOOK 

TO THE STUDENT

For this eleventh edition we have developed the range of 
learning aids to suit your needs more closely than ever before. 
In addition to the variety of features already present, we now 
derive key equations in a helpful new way, through the How 
is that done? sections, to emphasize how mathematics is an 
interesting, essential, and integral feature of understanding 
physical chemistry. 

Innovative structure

Short Topics are grouped into Focus sections, making the 
subject more accessible. Each Topic opens with a comment 
on why it is important, a statement of its key idea, and a brief 
summary of the background that you need to know.

Notes on good practice

Our ‘Notes on good practice’ will help you avoid making 
common mistakes. Among other things, they encourage con-
formity to the international language of science by setting out 
the conventions and procedures adopted by the International 
Union of Pure and Applied Chemistry (IUPAC).
 

Resource section

Te Resource section at the end of the book includes a table 
of useful integrals, extensive tables of physical and chemical 
data, and character tables. Short extracts of most of these 
tables appear in the Topics themselves: they are there to give 
you an idea of the typical values of the physical quantities 
mentioned in the text. 
 

Checklist of concepts

A checklist of key concepts is provided at the end of each 
Topic, so that you can tick of the ones you have mastered.
 

For example, a closed system can expand and thereby raise a 
weight in the surroundings; a closed system may also transfer 
energy to the surroundings if they are at a lower temperature. 
An isolated system is a closed system that has neither me-
chanical nor thermal contact with its surroundings.

2A.1 Work, heat, and energy

Although thermodynamics deals with observations on bulk 
systems, it is immeasurably enriched by understanding the 
molecular origins of these observations.

(a) Operational de�nitions
�e fundamental physical property in thermodynamics is 
work: work is done to achieve motion against an opposing 
force (�e chemist’s toolkit 6). A simple example is the process 
of raising a weight against the pull of gravity. A process does 
work if in principle it can be harnessed to raise a weight some-
where in the surroundings. An example of doing work is the 
expansion of a gas that pushes out a piston: the motion of the 
piston can in principle be used to raise a weight. Another ex-
ample is a chemical reaction in a cell, which leads to an electric 

TOPIC 2A Internal energy

➤ Why do you need to know this material?
The First Law of thermodynamics is the foundation of the 
discussion of the role of energy in chemistry. Wherever the 
generation or use of energy in physical transformations or 
chemical reactions is of interest, lying in the background 
are the concepts introduced by the First Law.

➤ What is the key idea?
The total energy of an isolated system is constant.

➤ What do you need to know already?
This Topic makes use of the discussion of the properties of 
gases (Topic 1A), particularly the perfect gas law. It builds 
on the de�nition of work given in The chemist’s toolkit 6.

For the purposes of thermodynamics, the universe is divided 
into two parts, the system and its surroundings. �e system is 
the part of the world of interest. It may be a reaction vessel, an 
engine, an electrochemical cell, a biological cell, and so on. �e 
surroundings comprise the region outside the system and are 
where measurements are made. �e type of system depends 
on the characteristics of the boundary that divides it from the 

A note on good practice An allotrope is a particular molecular 
form of an element (such as O2 and O3) and may be solid, liquid, 
or gas. A polymorph is one of a number of solid phases of an ele-
ment or compound.

�e number of phases in a system is denoted P. A gas, or a 
gaseous mixture, is a single phase (P = 1), a crystal of a sub-

Checklist of concepts

☐ 1. �e physical state of a sample of a substance, its physi-
cal condition, is de
ned by its physical properties.

☐ 2. Mechanical equilibrium is the condition of equality of 
pressure on either side of a shared movable wall.

Contents

1 Common integrals 866

2 Units 868

3 Data 869

862

864

865
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PRESENTING THE MATHEMATICS

How is that done?

You need to understand how an equation is derived from rea-
sonable assumptions and the details of the mathematical steps 
involved. Tis is accomplished in the text through the new 
‘How is that done?’ sections, which replace the Justifcations of 
earlier editions. Each one leads from an issue that arises in the 
text, develops the necessary mathematics, and arrives at the 
equation or conclusion that resolves the issue. Tese sections 
maintain the separation of the equation and its derivation 
so that you can fnd them easily for review, but at the same 
time emphasize that mathematics is an essential feature of  
physical chemistry. 

The chemist’s toolkits 

Te chemist’s toolkits, which are much more numerous in this  
edition, are reminders of the key mathematical, physical, and 
chemical concepts that you need to understand in order to  
follow the text. Tey appear where they are frst needed. Many 
of these Toolkits are relevant to more than one Topic, and a 
compilation of them, with enhancements in the form of more 
information and brief illustrations, appears on the web site.  
www.oup.com/uk/pchem11e/

Annotated equations and equation labels 

We have annotated many equations to help you follow how 
they are developed. An annotation can take you across the 
equals sign: it is a reminder of the substitution used, an 
approximation made, the terms that have been assumed 
constant, an integral used, and so on. An annotation can 
also be a reminder of the signifcance of an individual term 
in an expression. We sometimes colour a collection of num-
bers or symbols to show how they carry from one line to the 
next. Many of the equations are labelled to highlight their  
signifcance. 

Checklists of equations 

A handy checklist at the end of each topic summarizes the 
most important equations and the conditions under which  
they apply. Don’t think, however, that you have to memorize 
every equation in these checklists.

How is that done? 4A.1 Deducing the phase rule

�e argument that leads to the phase rule is most easily appre-
ciated by 
rst thinking about the simpler case when only one 
component is present and then generalizing the result to an 
arbitrary number of components.

Step 1 Consider the case where only one component is present
When only one phase is present (P = 1), both p and T can be 
varied independently, so F = 2. Now consider the case where 
two phases α and β are in equilibrium (P = 2). If the phases 
are in equilibrium at a given pressure and temperature, their 
chemical potentials must be equal:

Checklist of equations

Property Equation

Gibbs energy of mixing ΔmixG = nRT(xA ln xA + xB ln xB)

Entropy of mixing ΔmixS = −nR(xA ln xA + xB ln xB)
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, this expression can be rearranged  
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V  

 Vibrational contribution to CV,m  (13E.3)

Um(T) = Um(0) + NA 〈εV〉
d(1/f )/dx = −(1/f 2)df/dx 
used twice

The chemist’s toolkit 2 Properties of bulk matter

�e state of a bulk sample of matter is de�ned by specifying the 
values of various properties. Among them are:

�e mass, m, a measure of the quantity of matter present 
(unit: kilogram, kg).
�e volume, V, a measure of the quantity of space the sam-
ple occupies (unit: cubic metre, m3).
�e amount of substance, n, a measure of the number of 
speci�ed entities (atoms, molecules, or formula units) pre-
sent (unit: mole, mol).
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SET TING UP AND SOLVING PROBLEMS

Brief illustrations

A Brief illustration shows you how to use an equation or con-
cept that has just been introduced in the text. It shows you 
how to use data and manipulate units correctly. It also helps 
you to become familiar with the magnitudes of quantities. 

Examples

Worked Examples are more detailed illustrations of the appli-
cation of the material, and typically require you to assemble 
and deploy the relevant concepts and equations. 

We suggest how you should collect your thoughts (that is a 
new feature) and then proceed to a solution. All the worked 
Examples are accompanied by Self-tests to enable you to test 
your grasp of the material afer working through our solution 
as set out in the Example. 

Discussion questions

Discussion questions appear at the end of every Focus, and are 
organised by Topic. Tese questions are designed to encour-
age you to refect on the material you have just read, to review 
the key concepts, and sometimes to think about its implica-
tions and limitations.

Exercises and problems

Exercises and Problems are also provided at the end of every 
Focus and organised by Topic. Exercises are designed as 
relatively straightforward numerical tests; the Problems are 
more challenging and typically involve constructing a more 
detailed answer. Te Exercises come in related pairs, with 
fnal numerical answers available online for the ‘a’ questions. 
Final numerical answers to the odd-numbered Problems are 
also available online.

Integrated activities

At the end of every Focus you will fnd questions that span 
several Topics. Tey are designed to help you use your knowl-
edge creatively in a variety of ways.

Brief illustration 3B.1

When the volume of any perfect gas is doubled at constant 
temperature, Vf/Vi = 2, and hence the change in molar entropy 
of the system is

ΔSm = (8.3145 J K−1 mol−1) × ln 2 = +5.76 J K−1 mol−1

Example 1A.1 Using the perfect gas law

In an industrial process, nitrogen gas is introduced into 
a vessel of constant volume at a pressure of 100 atm and a 
temperature of 300 K. �e gas is then heated to 500 K. What 
pressure would the gas then exert, assuming that it behaved 
as a perfect gas?

Collect your thoughts �e pressure is expected to be greater 
on account of the increase in temperature. �e perfect gas 

FOCUS 3 The Second and Third Laws

Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

TOPIC 3A Entropy

Discussion questions
D3A.1 �e evolution of life requires the organization of a very large number 
of molecules into biological cells. Does the formation of living organisms 
violate the Second Law of thermodynamics? State your conclusion clearly and 
present detailed arguments to support it.

D3A.2 Discuss the signi�cance of the terms ‘dispersal’ and ‘disorder’ in the 
context of the Second Law.

D3A.3 Discuss the relationships between the various formulations of the 
Second Law of thermodynamics.

Exercises
E3A.1(a) Consider a process in which the entropy of a system increases by 
125 J K−1 and the entropy of the surroundings decreases by 125 J K−1. Is the 
process spontaneous?
E3A.1(b) Consider a process in which the entropy of a system increases by 
105 J K−1 and the entropy of the surroundings decreases by 95 J K−1. Is the 
process spontaneous?

E3A.2(a) Consider a process in which 100 kJ of energy is transferred reversibly 
and isothermally as heat to a large block of copper. Calculate the change in 
entropy of the block if the process takes place at (a) 0 °C, (b) 50 °C.
E3A.2(b) Consider a process in which 250 kJ of energy is transferred reversibly 
and isothermally as heat to a large block of lead. Calculate the change in 
entropy of the block if the process takes place at (a) 20 °C, (b) 100 °C.

E3A.3(a) Calculate the change in entropy of the gas when 15 g of carbon dioxide 
gas are allowed to expand isothermally from 1.0 dm3 to 3.0 dm3 at 300 K.
E3A.3(b) Calculate the change in entropy of the gas when 4.00 g of nitrogen is 
allowed to expand isothermally from 500 cm3 to 750 cm3 at 300 K.

E3A.4(a) Calculate the change in the entropies of the system and the 
surroundings, and the total change in entropy, when a sample of nitrogen 

gas of mass 14 g at 298 K doubles its volume in (a) an isothermal reversible 
expansion, (b) an isothermal irreversible expansion against pex = 0, and (c) an 
adiabatic reversible expansion.
E3A.4(b) Calculate the change in the entropies of the system and the 
surroundings, and the total change in entropy, when the volume of a sample 
of argon gas of mass 2.9 g at 298 K increases from 1.20 dm3 to 4.60 dm3 in (a) 
an isothermal reversible expansion, (b) an isothermal irreversible expansion 
against pex = 0, and (c) an adiabatic reversible expansion.

E3A.5(a) In a certain ideal heat engine, 10.00 kJ of heat is withdrawn from the 
hot source at 273 K and 3.00 kJ of work is generated. What is the temperature 
of cold sink?
E3A.5(b) In an ideal heat engine the cold sink is at 0 °C. If 10.00 kJ of heat 
is withdrawn from the hot source and 3.00 kJ of work is generated, at what 
temperature is the hot source?

E3A.6(a) What is the e�ciency of an ideal heat engine in which the hot source 
is at 100 °C and the cold sink is at 10 °C?
E3A.6(b) An ideal heat engine has a hot source at 40 °C. At what temperature 
must the cold sink be if the e�ciency is to be 10 per cent?

Problems
P3A.1 A sample consisting of 1.00 mol of perfect gas molecules at 27 °C is 
expanded isothermally from an initial pressure of 3.00 atm to a �nal pressure 
of 1.00 atm in two ways: (a) reversibly, and (b) against a constant external 
pressure of 1.00 atm. Evaluate q, w, ΔU, ΔH, ΔS, ΔSsurr, and ΔStot in each case.

P3A.2 A sample consisting of 0.10 mol of perfect gas molecules is held by a 
piston inside a cylinder such that the volume is 1.25 dm3; the external pressure 
is constant at 1.00 bar and the temperature is maintained at 300 K by a 
thermostat. �e piston is released so that the gas can expand. Calculate (a) the 
volume of the gas when the expansion is complete; (b) the work done when 
the gas expands; (c) the heat absorbed by the system. Hence calculate ΔStot.

P3A.3 Consider a Carnot cycle in which the working substance is 0.10 mol of 
perfect gas molecules, the temperature of the hot source is 373 K, and that 
of the cold sink is 273 K; the initial volume of gas is 1.00 dm3, which doubles 
over the course of the �rst isothermal stage. For the reversible adiabatic stages 
it may be assumed that VT 3/2 = constant. (a) Calculate the volume of the gas 
a�er Stage 1 and a�er Stage 2 (Fig. 3A.8). (b) Calculate the volume of gas a�er 
Stage 3 by considering the reversible adiabatic compression from the starting 
point. (c) Hence, for each of the four stages of the cycle, calculate the heat 

transferred to or from the gas. (d) Explain why the work done is equal to the 
di�erence between the heat extracted from the hot source and that deposited 
in the cold sink. (e) Calculate the work done over the cycle and hence the 
e�ciency η. (f) Con�rm that your answer agrees with the e�ciency given by 
eqn 3A.9 and that your values for the heat involved in the isothermal stages 
are in accord with eqn 3A.6.

P3A.4 �e Carnot cycle is usually represented on a pressure−volume 
diagram (Fig. 3A.8), but the four stages can equally well be represented 
on temperature−entropy diagram, in which the horizontal axis is entropy 
and the vertical axis is temperature; draw such a diagram. Assume that the 
temperature of the hot source is Th and that of the cold sink is Tc, and that the 
volume of the working substance (the gas) expands from VA to VB in the �rst 
isothermal stage. (a) By considering the entropy change of each stage, derive 
an expression for the area enclosed by the cycle in the temperature−entropy 
diagram. (b) Derive an expression for the work done over the cycle. (Hint: �e 
work done is the di�erence between the heat extracted from the hot source 
and that deposited in the cold sink; or use eqns 3A.7 and 3A.9) (c) Comment 
on the relation between your answers to (a) and (b).
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‘Impact’ sections

‘Impact’ sections show how physical chemistry is applied in a 
variety of modern contexts. Tey showcase physical chemistry 
as an evolving subject. www.oup.com/uk/pchem11e/

A deeper look

Tese online sections take some of the material in the text 
further and are there if you want to extend your knowledge 
and see the details of some of the more advanced derivations 
www.oup.com/uk/pchem11e/

Group theory tables

Comprehensive group theory tables are available to download.

Molecular modelling problems

Files containing molecular modelling problems can be down-
loaded, designed for use with the Spartan Student™ sofware. 
However they can also be completed using any modelling 
sofware that allows Hartree–Fock, density functional, and 
MP2 calculations. Te site can be accessed at www.oup.com/
uk/pchem11e/.

THERE IS A LOT OF ADDITIONAL MATERIAL ON THE WEB

TO THE INSTRUC TOR

We have designed the text to give you maximum fexibility in 
the selection and sequence of Topics, while the grouping of 
Topics into Focuses helps to maintain the unity of the subject.  
Additional resources are:

Figures and tables from the book

Lecturers can fnd the artwork and tables from the book in 
ready-to-download format. Tese may be used for lectures 

without charge (but not for commercial purposes without 
specifc permission).

Key equations 

Supplied in Word format so you can download and edit them.

Lecturer resources are available only to registered adopters of 
the textbook. To register, simply visit www.oup.com/uk/pchem11e/  
and follow the appropriate links. 

SOLUTIONS MANUALS

Two solutions manuals have been written by Peter Bolgar, 
Haydn Lloyd, Aimee North, Vladimiras Oleinikovas, Stephanie 
Smith, and James Keeler.

Te Student’s Solutions Manual (ISBN 9780198807773) 
provides full solutions to the ‘a’ Exercises and to the odd-
numbered Problems.

Te Instructor’s Solutions Manual provides full solutions 
to the ‘b’ Exercises and to the even-numbered Problems 
(available to download online for registered adopters of the  
book only).

IMPAC T 1  …ON ENVIRONMENTAL SCIENCE:  
The gas laws and the weather

�e biggest sample of gas readily accessible to us is the 
atmosphere, a mixture of gases with the composition 
summarized in Table 1. �e composition is maintained 
moderately constant by di�usion and convection (winds, 
particularly the local turbulence called eddies) but the 
pressure and temperature vary with altitude and with 
the local conditions, particularly in the troposphere (the 
‘sphere of change’), the layer extending up to about 11 km.
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A DEEPER LOOK 2  The fugacity

At various stages in the development of physical chemistry 
it is necessary to switch from a consideration of ideal-
ized systems to real systems. In many cases it is desirable 
to preserve the form of the expressions that have been 
derived for an idealized system. �en deviations from the 
idealized behaviour can be expressed most simply. For 
instance, the pressure-dependence of the molar Gibbs 
energy of a perfect gas is

G G RT p
p

lnm m
○

○= +




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−−
−−  (1a)

In this expression, f1 is the fugacity when the pressure is 
p1 and f2 is the fugacity when the pressure is p2. �at is, 
from eqn 3b,

V p RT f
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p

p

m
2
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For a perfect gas,
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values in order to be aware of values and to spot numerical er-
rors, we display intermediate results as n.nnn… and round the 
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PROLOGUE  Energy, temperature, and chemistry

Energy is a concept used throughout chemistry to discuss mo-
lecular structures, reactions, and many other processes. What 
follows is an informal frst look at the important features of 
energy. Its precise defnition and role will emerge throughout 
the course of this text.

Te transformation of energy from one form to another is 
described by the laws of thermodynamics. Tey are applicable 
to bulk matter, which consists of very large numbers of atoms 
and molecules. Te ‘First Law’ of thermodynamics is a state-
ment about the quantity of energy involved in a transforma-
tion; the ‘Second Law’ is a statement about the dispersal of that 
energy (in a sense that will be explained).

To discuss the energy of individual atoms and molecules 
that make up samples of bulk matter it is necessary to use 
quantum mechanics. According to this theory, the energy as-
sociated with the motion of a particle is ‘quantized’, meaning 
that the energy is restricted to certain values, rather than being 
able to take on any value. Tree diferent kinds of motion can 
occur: translation (motion through space), rotation (change of 
orientation), and vibration (the periodic stretching and bend-
ing of bonds). Figure 1 depicts the relative sizes and spacing of 
the energy states associated with these diferent kinds of mo-
tion of typical molecules and compares them with the typi-
cal energies of electrons in atoms and molecules. Te allowed 
energies associated with translation are so close together in 
normal-sized containers that they form a continuum. In con-
trast, the separation between the allowed electronic energy 
states of atoms and molecules is very large.

Te link between the energies of individual molecules and the 
energy of bulk matter is provided by one of the most important 
concepts in chemistry, the Boltzmann distribution. Bulk matter 

consists of large numbers of molecules, each of which is in one of 
its available energy states. Te total number of molecules with a 
particular energy due to translation, rotation, vibration, and its 
electronic state is called the ‘population’ of that state. Most mole-
cules are found in the lowest energy state, and higher energy states 
are occupied by progressively fewer molecules. Te Boltzmann 
distribution gives the population, Ni, of any energy state in terms 
of the energy of the state, εi, and the absolute temperature, T:

Ni ∝ e−εi/kT

In this expression, k is Boltzmann’s constant (its value is 
listed inside the front cover), a universal constant (in the sense 
of having the same value for all forms of matter). Figure 2 
shows the Boltzmann distribution for two temperatures: as 
the temperature increases higher energy states are populated 
at the expense of states lower in energy. According to the 
Boltzmann distribution, the temperature is the single param-
eter that governs the spread of populations over the available 
energy states, whatever their nature.
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Figure 1  The relative energies of the allowed states of various 
kinds of atomic and molecular motion. 

Figure 2  The relative populations of states at (a) low, (b) high 
temperature according to the Boltzmann distribution. 
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2  Prologue  Energy, temperature, and chemistry 

Te Boltzmann distribution, as well as providing insight 
into the signifcance of temperature, is central to understand-
ing much of chemistry. Tat most molecules occupy states of 
low energy when the temperature is low accounts for the exist-
ence of compounds and the persistence of liquids and solids. 
Tat highly excited energy levels become accessible at high 
temperatures accounts for the possibility of reaction as one 
substance acquires the ability to change into another. Both 
features are explored in detail throughout the text.

You should keep in mind the Boltzmann distribution 
(which is treated in greater depth later in the text) whenever 
considering the interpretation of the properties of bulk matter 
and the role of temperature. An understanding of the fow of 
energy and how it is distributed according to the Boltzmann 
distribution is the key to understanding thermodynamics, 
structure, and change throughout chemistry.



FOCUS 1

The properties of gases

A gas is a form of matter that flls whatever container it oc-
cupies. Tis Focus establishes the properties of gases that are 
used throughout the text.

1A  The perfect gas

Tis Topic is an account of an idealized version of a gas, a ‘per-
fect gas’, and shows how its equation of state may be assembled 
from the experimental observations summarized by Boyle’s 
law, Charles’s law, and Avogadro’s principle.
1A.1  Variables of state; 1A.2  Equations of state

1B  The kinetic model

A central feature of physical chemistry is its role in building 
models of molecular behaviour that seek to explain observed 
phenomena. A prime example of this procedure is the de-
velopment of a molecular model of a perfect gas in terms of 
a collection of molecules (or atoms) in ceaseless, essentially 
random motion. As well as accounting for the gas laws, this 
model can be used to predict the average speed at which mol-
ecules move in a gas, and its dependence on temperature. In 
combination with the Boltzmann distribution (see the text’s 
Prologue), the model can also be used to predict the spread of 
molecular speeds and its dependence on molecular mass and 
temperature.
1B.1  The model; 1B.2  Collisions

1C  Real gases

Te perfect gas is a starting point for the discussion of prop-
erties of all gases, and its properties are invoked throughout 
thermodynamics. However, actual gases, ‘real gases’, have 
properties that difer from those of perfect gases, and it is nec-
essary to be able to interpret these deviations and build the ef-
fects of molecular attractions and repulsions into the model. 
Te discussion of real gases is another example of how initially 
primitive models in physical chemistry are elaborated to take 
into account more detailed observations.
1C.1  Deviations from perfect behaviour; 1C.2  The van der Waals 
equation

Web resources  What is an application 
of this material?

Te perfect gas law and the kinetic theory can be applied to 
the study of phenomena confned to a reaction vessel or en-
compassing an entire planet or star. In Impact 1 the gas laws 
are used in the discussion of meteorological phenomena—the 
weather. Impact 2 examines how the kinetic model of gases 
has a surprising application: to the discussion of dense stellar 
media, such as the interior of the Sun.



of pressure, the pascal (Pa, 1 Pa = 1 N m−2), is introduced in 
Te chemist’s toolkit 1. Several other units are still widely used 
(Table 1A.1). A pressure of 1 bar is the standard pressure for 
reporting data; it is denoted p⦵.

If two gases are in separate containers that share a common 
movable wall (Fig. 1A.1), the gas that has the higher pressure 
will tend to compress (reduce the volume of) the gas that has 
lower pressure. Te pressure of the high-pressure gas will fall as 
it expands and that of the low-pressure gas will rise as it is com-
pressed. Tere will come a stage when the two pressures are 
equal and the wall has no further tendency to move. Tis con-
dition of equality of pressure on either side of a movable wall is 
a state of mechanical equilibrium between the two gases. Te 
pressure of a gas is therefore an indication of whether a con-
tainer that contains the gas will be in mechanical equilibrium 
with another gas with which it shares a movable wall.

TOPIC 1A  The perfect gas

➤  Why do you need to know this material?

Equations related to perfect gases provide the basis for 
the development of many relations in thermodynamics. 
The perfect gas law is also a good frst approximation for 
accounting for the properties of real gases.

➤  What is the key idea?

The perfect gas law, which is based on a series of empirical 
observations, is a limiting law that is obeyed increasingly 
well as the pressure of a gas tends to zero.

➤  What do you need to know already?

You need to know how to handle quantities and units in 
calculations, as reviewed in The chemist’s toolkit 1. You also 
need to be aware of the concepts of pressure, volume, 
amount of substance, and temperature, all reviewed in The 
chemist’s toolkit 2.

Te properties of gases were among the frst to be established 
quantitatively (largely during the seventeenth and eighteenth 
centuries) when the technological requirements of travel in 
balloons stimulated their investigation. Tese properties set 
the stage for the development of the kinetic model of gases, as 
discussed in Topic 1B.

1A.1  Variables of state

Te physical state of a sample of a substance, its physical con-
dition, is defned by its physical properties. Two samples of the 
same substance that have the same physical properties are in 
the same state. Te variables needed to specify the state of a 
system are the amount of substance it contains, n, the volume 
it occupies, V, the pressure, p, and the temperature, T.

(a)  Pressure

Te origin of the force exerted by a gas is the incessant bat-
tering of the molecules on the walls of its container. Te col-
lisions are so numerous that they exert an efectively steady 
force, which is experienced as a steady pressure. Te SI unit 

Table 1A.1  Pressure units*

Name Symbol Value

pascal Pa 1 Pa = 1 N m−2, 1 kg m−1 s−2

bar bar 1 bar = 105 Pa

atmosphere atm 1 atm = 101.325 kPa

torr Torr 1 Torr = (101 325/760) Pa = 133.32… Pa

millimetres of mercury mmHg 1 mmHg = 133.322… Pa

pounds per square inch psi 1 psi = 6.894 757… kPa

* Values in bold are exact.

Movable
wallHigh

pressure

High
pressure

Low
pressure

Low
pressure

Equal
pressures

Equal
pressures

(a)

(b)

(c)

Figure 1A.1  When a region of high pressure is separated from a 
region of low pressure by a movable wall, the wall will be pushed 
into one region or the other, as in (a) and (c). However, if the 
two pressures are identical, the wall will not move (b). The latter 
condition is one of mechanical equilibrium between the two 
regions.
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Te pressure exerted by the atmosphere is measured with 
a barometer. Te original version of a barometer (which was 
invented by Torricelli, a student of Galileo) was an inverted 
tube of mercury sealed at the upper end. When the column of 
mercury is in mechanical equilibrium with the atmosphere, 
the pressure at its base is equal to that exerted by the atmos-
phere. It follows that the height of the mercury column is pro-
portional to the external pressure.

Te pressure of a sample of gas inside a container is 
measured by using a pressure gauge, which is a device with 
properties that respond to the pressure. For instance, a 
Bayard–Alpert pressure gauge is based on the ionization of 
the molecules present in the gas and the resulting current of 
ions is interpreted in terms of the pressure. In a capacitance 
manometer, the defection of a diaphragm relative to a fxed 
electrode is monitored through its efect on the capacitance 
of the arrangement. Certain semiconductors also respond to 
pressure and are used as transducers in solid-state pressure 
gauges.

(b)  Temperature

Te concept of temperature is introduced in Te chemist’s 
toolkit 2. In the early days of thermometry (and still in labora-
tory practice today), temperatures were related to the length 
of a column of liquid, and the diference in lengths shown 
when the thermometer was frst in contact with melting ice 
and then with boiling water was divided into 100 steps called 
‘degrees’, the lower point being labelled 0. Tis procedure led 

to the Celsius scale of temperature. In this text, temperatures 
on the Celsius scale are denoted θ (theta) and expressed in de-
grees Celsius (°C). However, because diferent liquids expand 
to diferent extents, and do not always expand uniformly over 
a given range, thermometers constructed from diferent mate-
rials showed diferent numerical values of the temperature be-
tween their fxed points. Te pressure of a gas, however, can be 
used to construct a perfect-gas temperature scale that is inde-
pendent of the identity of the gas. Te perfect-gas scale turns 
out to be identical to the thermodynamic temperature scale 
(Topic 3A), so the latter term is used from now on to avoid a 
proliferation of names.

On the thermodynamic temperature scale, temperatures 
are denoted T and are normally reported in kelvins (K; not °K). 
Termodynamic and Celsius temperatures are related by the 
exact expression

T/K = θ/°C + 273.15	 Celsius scale 
[defnition]

  (1A.1) 

Tis relation is the current defnition of the Celsius scale in 
terms of the more fundamental Kelvin scale. It implies that a 
diference in temperature of 1 °C is equivalent to a diference 
of 1 K.

Brief illustration 1A.1

To express 25.00 °C as a temperature in kelvins, eqn 1A.1 is 
used to write

T/K = (25.00 °C)/°C + 273.15 = 25.00 + 273.15 = 298.15

The chemist’s toolkit 1  Quantities and units

Te result of a measurement is a physical quantity that is 
reported as a numerical multiple of a unit:

physical quantity = numerical value × unit

It follows that units may be treated like algebraic quantities and 
may be multiplied, divided, and cancelled. Tus, the expression 
(physical quantity)/unit is the numerical value (a dimension-
less quantity) of the measurement in the specifed units. For 
instance, the mass m of an object could be reported as m = 2.5 kg 
or m/kg = 2.5. In this instance the unit of mass is 1 kg, but it is 
common to refer to the unit simply as kg (and likewise for other 
units). See Table A.1 in the Resource section for a list of units.

Although it is good practice to use only SI units, there will be 
occasions where accepted practice is so deeply rooted that physical 
quantities are expressed using other, non-SI units. By international 
convention, all physical quantities are represented by oblique 
(sloping) letters (for instance, m for mass); units are given in 
roman (upright) letters (for instance m for metre).

Units may be modifed by a prefx that denotes a factor of a 
power of 10. Among the most common SI prefxes are those 

listed in Table A.2 in the Resource section. Examples of the use 
of these prefxes are:

1 nm = 10−9 m     1 ps = 10−12 s    1 µmol = 10−6 mol

Powers of units apply to the prefx as well as the unit they mod-
ify. For example, 1 cm3 = 1 (cm)3, and (10−2 m)3 = 10−6 m3. Note 
that 1 cm3 does not mean 1 c(m3). When carrying out numerical 
calculations, it is usually safest to write out the numerical value 
of an observable in scientifc notation (as n.nnn × 10n).

Tere are seven SI base units, which are listed in Table A.3 
in the Resource section. All other physical quantities may be 
expressed as combinations of these base units. Molar concen-
tration (more formally, but very rarely, amount of substance 
concentration) for example, which is an amount of substance 
divided by the volume it occupies, can be expressed using the 
derived units of mol dm−3 as a combination of the base units for 
amount of substance and length. A number of these derived 
combinations of units have special names and symbols. For 
example, force is reported in the derived unit newton, 1 N = 
1 kg m s−2 (see Table A.4 in the Resource section).
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p = 0, regardless of the size of the units, such as bar or pascal). 
However, it is appropriate to write 0 °C because the Celsius scale 
is not absolute.

1A.2  Equations of state

Although in principle the state of a pure substance is specifed 
by giving the values of n, V, p, and T, it has been established 
experimentally that it is sufcient to specify only three of these 
variables since doing so fxes the value of the fourth variable. 

The chemist’s toolkit 2  Properties of bulk matter

Te state of a bulk sample of matter is defned by specifying the 
values of various properties. Among them are:

Te mass, m, a measure of the quantity of matter present 
(unit: kilogram, kg).
Te volume, V, a measure of the quantity of space the sam-
ple occupies (unit: cubic metre, m3).
Te amount of substance, n, a measure of the number of 
specifed entities (atoms, molecules, or formula units) pre-
sent (unit: mole, mol).

Te amount of substance, n (colloquially, ‘the number of 
moles’), is a measure of the number of specifed entities present 
in the sample. ‘Amount of substance’ is the ofcial name of the 
quantity; it is commonly simplifed to ‘chemical amount’ or 
simply ‘amount’. A mole is currently defned as the number of 
carbon atoms in exactly 12 g of carbon-12. (In 2011 the decision 
was taken to replace this defnition, but the change has not yet, 
in 2018, been implemented.) Te number of entities per mole is 
called Avogadro’s constant, NA; the currently accepted value is 
6.022 × 1023 mol−1 (note that NA is a constant with units, not a 
pure number).

Te molar mass of a substance, M (units: formally kg mol−1 
but commonly g mol−1) is the mass per mole of its atoms, its 
molecules, or its formula units. Te amount of substance of 
specifed entities in a sample can readily be calculated from its 
mass, by noting that

=n m
M 	       Amount of substance

A note on good practice  Be careful to distinguish atomic or 
molecular mass (the mass of a single atom or molecule; unit: kg) 
from molar mass (the mass per mole of atoms or molecules; 
units: kg mol−1). Relative molecular masses of atoms and mol-
ecules, Mr = m/mu, where m is the mass of the atom or molecule 
and mu is the atomic mass constant (see inside front cover), 
are still widely called ‘atomic weights’ and ‘molecular weights’ 
even though they are dimensionless quantities and not weights 
(‘weight’ is the gravitational force exerted on an object).

A sample of matter may be subjected to a pressure, p (unit: pascal, 
Pa; 1 Pa = 1 kg m−1 s−2), which is defned as the force, F, it is subjected 
to, divided by the area, A, to which that force is applied. Although 
the pascal is the SI unit of pressure, it is also common to express 
pressure in bar (1 bar = 105 Pa) or atmospheres (1 atm = 101 325 Pa 
exactly), both of which correspond to typical atmospheric pres-
sure. Because many physical properties depend on the pressure 
acting on a sample, it is appropriate to select a certain value of the 
pressure to report their values. Te standard pressure for report-
ing physical quantities is currently defned as p⦵ = 1 bar exactly.

To specify the state of a sample fully it is also necessary to give 
its temperature, T. Te temperature is formally a property that 
determines in which direction energy will fow as heat when 
two samples are placed in contact through thermally conduct-
ing walls: energy fows from the sample with the higher tem-
perature to the sample with the lower temperature. Te symbol 
T is used to denote the thermodynamic temperature which is 
an absolute scale with T = 0 as the lowest point. Temperatures 
above T = 0 are then most commonly expressed by using 
the Kelvin scale, in which the gradations of temperature are 
expressed in kelvins (K). Te Kelvin scale is currently defned 
by setting the triple point of water (the temperature at which 
ice, liquid water, and water vapour are in mutual equilibrium) 
at exactly 273.16 K (as for certain other units, a decision has 
been taken to revise this defnition, but it has not yet, in 2018, 
been implemented). Te freezing point of water (the melting 
point of ice) at 1 atm is then found experimentally to lie 0.01 K 
below the triple point, so the freezing point of water is 273.15 K.

Suppose a sample is divided into smaller samples. If a property 
of the original sample has a value that is equal to the sum of its val-
ues in all the smaller samples (as mass would), then it is said to be 
extensive. Mass and volume are extensive properties. If a property 
retains the same value as in the original sample for all the smaller 
samples (as temperature would), then it is said to be intensive. 
Temperature and pressure are intensive properties. Mass density, 
ρ = m/V, is also intensive because it would have the same value for 
all the smaller samples and the original sample. All molar proper-
ties, Xm = X/n, are intensive, whereas X and n are both extensive.

Note how the units (in this case, °C) are cancelled like num-
bers. Tis is the procedure called ‘quantity calculus’ in which 
a physical quantity (such as the temperature) is the product 
of a numerical value (25.00) and a unit (1 °C); see Te chem-
ist’s toolkit 1. Multiplication of both sides by K then gives 
T = 298.15 K.

A note on good practice  Te zero temperature on the thermody-
namic temperature scale is written T = 0, not T = 0 K. Tis scale 
is absolute, and the lowest temperature is 0 regardless of the size 
of the divisions on the scale (just as zero pressure is denoted 
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Tat is, it is an experimental fact that each substance is de-
scribed by an equation of state, an equation that interrelates 
these four variables.

Te general form of an equation of state is 

p = f(T,V,n)� General form of an equation of state   (1A.2)

Tis equation states that if the values of n, T, and V are known 
for a particular substance, then the pressure has a fxed value. 
Each substance is described by its own equation of state, but 
the explicit form of the equation is known in only a few special 
cases. One very important example is the equation of state of 
a ‘perfect gas’, which has the form p = nRT/V, where R is a con-
stant independent of the identity of the gas.

Te equation of state of a perfect gas was established by 
combining a series of empirical laws.

(a)  The empirical basis

Te following individual gas laws should be familiar:

Boyle’s law:    pV = constant, at constant n, T		  (1A.3a)

Charles’s law:   V = constant × T, at constant n, p		  (1A.3b)

              p = constant × T, at constant n, V		  (1A.3c)

Avogadro’s principle: 
              V = constant × n at constant p, T	  	 (1A.3d)

Boyle’s and Charles’s laws are examples of a limiting law, a law 
that is strictly true only in a certain limit, in this case p → 0. 
For example, if it is found empirically that the volume of a sub-
stance fts an expression V = aT + bp + cp2, then in the limit 
of p → 0, V = aT. Many relations that are strictly true only at 
p = 0 are nevertheless reasonably reliable at normal pressures 
(p ≈ 1 bar) and are used throughout chemistry.

Figure 1A.2 depicts the variation of the pressure of a sam-
ple of gas as the volume is changed. Each of the curves in the 

Pr
es

su
re

, p

Volume, V

0
0

Increasing
temperature, T

Figure 1A.2  The pressure–volume dependence of a fixed amount 
of perfect gas at diferent temperatures. Each curve is a hyperbola 
(pV = constant) and is called an isotherm.
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Figure 1A.4  The variation of the volume of a fixed amount of a 
perfect gas with the temperature at constant pressure. Note that 
in each case the isobars extrapolate to zero volume at T = 0, 
corresponding to θ = −273.15 °C. 
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Figure 1A.3  Straight lines are obtained when the pressure of a 
perfect gas is plotted against 1/V at constant temperature. These 
lines extrapolate to zero pressure at 1/V = 0. 

graph corresponds to a single temperature and hence is called 
an isotherm. According to Boyle’s law, the isotherms of gases 
are hyperbolas (a curve obtained by plotting y against x with 
xy = constant, or y = constant/x). An alternative depiction, a 
plot of pressure against 1/volume, is shown in Fig. 1A.3. Te 
linear variation of volume with temperature summarized by 
Charles’s law is illustrated in Fig. 1A.4. Te lines in this illus-
tration are examples of isobars, or lines showing the variation 
of properties at constant pressure. Figure 1A.5 illustrates the 
linear variation of pressure with temperature. Te lines in this 
diagram are isochores, or lines showing the variation of prop-
erties at constant volume.

A note on good practice  To test the validity of a relation between 
two quantities, it is best to plot them in such a way that they 
should give a straight line, because deviations from a straight 
line are much easier to detect than deviations from a curve. Te 
development of expressions that, when plotted, give a straight 
line is a very important and common procedure in physical 
chemistry.
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Figure 1A.5  The pressure of a perfect gas also varies linearly with 
the temperature at constant volume, and extrapolates to zero at  
T = 0 (−273.15 °C). 

Pr
es

su
re

, p

Temperature, T

0
0

Decreasing
volume, V

E
xt

ra
p

o
la

ti
o

n

Te empirical observations summarized by eqn 1A.3 can be 
combined into a single expression:

pV = constant × nT

Tis expression is consistent with Boyle’s law (pV = constant) 
when n and T are constant, with both forms of Charles’s law 
(p ∝ T, V ∝ T) when n and either V or p are held constant, and 
with Avogadro’s principle (V ∝ n) when p and T are constant. 
Te constant of proportionality, which is found experimen-
tally to be the same for all gases, is denoted R and called the 
(molar) gas constant. Te resulting expression

pV = nRT	 Perfect gas law   (1A.4)

is the perfect gas law (or perfect gas equation of state). It is the 
approximate equation of state of any gas, and becomes in-
creasingly exact as the pressure of the gas approaches zero. A 
gas that obeys eqn 1A.4 exactly under all conditions is called 
a perfect gas (or ideal gas). A real gas, an actual gas, behaves 
more like a perfect gas the lower the pressure, and is described 
exactly by eqn 1A.4 in the limit of p → 0. Te gas constant R 
can be determined by evaluating R = pV/nT for a gas in the 
limit of zero pressure (to guarantee that it is behaving per-
fectly).

A note on good practice  Despite ‘ideal gas’ being the more 
common term, ‘perfect gas’ is preferable. As explained in 
Topic 5B, in an ‘ideal mixture’ of A and B, the AA, BB, and 
AB interactions are all the same but not necessarily zero. In a 
perfect gas, not only are the interactions all the same, they are 
also zero.

Te surface in Fig. 1A.6 is a plot of the pressure of a fxed 
amount of perfect gas against its volume and thermodynamic 
temperature as given by eqn 1A.4. Te surface depicts the only 
possible states of a perfect gas: the gas cannot exist in states 
that do not correspond to points on the surface. Te graphs 
in Figs. 1A.2 and 1A.4 correspond to the sections through the 
surface (Fig. 1A.7).
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Figure 1A.6  A region of the p,V,T surface of a fixed amount of 
perfect gas. The points forming the surface represent the only 
states of the gas that can exist.
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Figure 1A.7  Sections through the surface shown in Fig. 1A.6 
at constant temperature give the isotherms shown in Fig. 1A.2. 
Sections at constant pressure give the isobars shown in Fig. 1A.4. 
Sections at constant volume give the isochores shown in Fig. 
1A.5. 

Example 1A.1  Using the perfect gas law

In an industrial process, nitrogen gas is introduced into 
a vessel of constant volume at a pressure of 100 atm and a 
temperature of 300 K. Te gas is then heated to 500 K. What 
pressure would the gas then exert, assuming that it behaved 
as a perfect gas?

Collect your thoughts  Te pressure is expected to be greater 
on account of the increase in temperature. Te perfect gas 
law in the form pV/nT = R implies that if the conditions are 
changed from one set of values to another, then because pV/nT 
is equal to a constant, the two sets of values are related by the 
‘combined gas law’

p V
n T

p V
n T

1 1

1 1

2 2

2 2
= 		  Combined gas law   (1A.5)
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Tis expression is easily rearranged to give the unknown 
quantity (in this case p2) in terms of the known. Te known 
and unknown data are summarized as follows:

n p V T 

Initial Same 100 atm Same 300 K

Final Same ? Same 500 K

The solution  Cancellation of the volumes (because V1 = V2) 
and amounts (because n1 = n2) on each side of the combined 
gas law results in

p
T

p
T

1

1

2

2
= 	

which can be rearranged into

p T
T p2

2

1
1= × 	

Substitution of the data then gives

p 500K
300K (100 atm) 167 atm2 = × =

	

Self-test 1A.1  What temperature would result in the same 
sample exerting a pressure of 300 atm?

Answer: 900 K

Te perfect gas law is of the greatest importance in physical 
chemistry because it is used to derive a wide range of relations 
that are used throughout thermodynamics. However, it is also 
of considerable practical utility for calculating the properties 
of a gas under a variety of conditions. For instance, the molar 
volume, Vm = V/n, of a perfect gas under the conditions called 
standard ambient temperature and pressure (SATP), which 
means 298.15 K and 1 bar (i.e. exactly 105 Pa), is easily calculated 
from Vm = RT/p to be 24.789 dm3 mol−1. An earlier defnition, 
standard temperature and pressure (STP), was 0 °C and 1 atm; 
at STP, the molar volume of a perfect gas is 22.414 dm3 mol−1.

Te molecular explanation of Boyle’s law is that if a sam-
ple of gas is compressed to half its volume, then twice as many 
molecules strike the walls in a given period of time than be-
fore it was compressed. As a result, the average force exerted 
on the walls is doubled. Hence, when the volume is halved the 
pressure of the gas is doubled, and pV is a constant. Boyle’s law 
applies to all gases regardless of their chemical identity (pro-
vided the pressure is low) because at low pressures the average 
separation of molecules is so great that they exert no infuence 
on one another and hence travel independently. Te molecu-
lar explanation of Charles’s law lies in the fact that raising the 
temperature of a gas increases the average speed of its mol-
ecules. Te molecules collide with the walls more frequently 
and with greater impact. Terefore they exert a greater pres-
sure on the walls of the container. For a quantitative account 
of these relations, see Topic 1B.

(b)  Mixtures of gases

When dealing with gaseous mixtures, it is often necessary 
to know the contribution that each component makes to 
the total pressure of the sample. The partial pressure, pJ, 
of a gas J in a mixture (any gas, not just a perfect gas), is 
defined as

pJ = xJp� Partial pressure 
[defnition]   (1A.6)

where xJ is the mole fraction of the component J, the amount 
of J expressed as a fraction of the total amount of molecules, n, 
in the sample:

�x
n
n n n nJ

J
A B= = + + � Mole fraction 

[defnition]   (1A.7)

When no J molecules are present, xJ = 0; when only J mole-
cules are present, xJ = 1. It follows from the defnition of xJ that, 
whatever the composition of the mixture, xA + xB + … = 1 and 
therefore that the sum of the partial pressures is equal to the 
total pressure:

pA + pB + … = (xA + xB + …)p = p		  (1A.8)

Tis relation is true for both real and perfect gases.
When all the gases are perfect, the partial pressure as de-

fned in eqn 1A.6 is also the pressure that each gas would exert 
if it occupied the same container alone at the same tempera-
ture. Te latter is the original meaning of ‘partial pressure’. 
Tat identifcation was the basis of the original formulation of 
Dalton’s law: 

Te pressure exerted by a mixture of gases is the  
sum of the pressures that each one would exert  
if it occupied the container alone. � Dalton’s law

Tis law is valid only for mixtures of perfect gases, so it is not 
used to defne partial pressure. Partial pressure is defned by 
eqn 1A.6, which is valid for all gases.

Example 1A.2  Calculating partial pressures

Te mass percentage composition of dry air at sea level is 
approximately N2: 75.5; O2: 23.2; Ar: 1.3. What is the par-
tial pressure of each component when the total pressure is 
1.20 atm?

Collect your thoughts  Partial pressures are defned by eqn 
1A.6. To use the equation, frst calculate the mole fractions 
of the components, by using eqn 1A.7 and the fact that the 
amount of atoms or molecules J of molar mass MJ in a sample 
of mass mJ is nJ = mJ/MJ. Te mole fractions are independent of 
the total mass of the sample, so choose the latter to be exactly 
100 g (which makes the conversion from mass percentages 
very easy). Tus, the mass of N2 present is 75.5 per cent of 
100 g, which is 75.5 g.




